MATH 2028 - Iterated integrals \& Fubini's Theorem
GOAL: How to evaluate $\int_{R} f d V$ for a given bdd function $f: R \rightarrow \mathbb{R}$ which is integrable on a rectangle $R \subseteq \mathbb{R}^{n}$?

Recall the 1D Fundamental Theorem of Calculus:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

provided that $f=F^{\prime}:[a, b] \rightarrow \mathbb{R}$ is cts.
We will show that if the function $f: R \rightarrow \mathbb{R}$ in n variable is "nice" enough, then we can express the multiple integral $\int_{R} f d V$ as n iterated 1D integrals and the "order" of integration does not matter.

Recall: If $f=f(x, y)$ is a C^{2} function on $U \subseteq \mathbb{R}^{2}$. then

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

More precisely. if $f: R=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is cts. Then we will have

$$
\begin{aligned}
\int_{R} f d V & =\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \\
& =\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
\end{aligned}
$$

Fubini's Theorem will tell us exactly when the two equalities above hold. To get a feeling of how things work. let's look at a few examples.

Example 1: Consider the cts function

$$
f(x, y)=x y^{2}
$$

defined on the rectangle $R=[0,1] \times[-1,1] \subseteq \mathbb{R}^{2}$. We compute the "iterated integrals" in different orders:

$$
\begin{aligned}
\int_{-1}^{1} \int_{0}^{1} f(x, y) d x d y & =\int_{-1}^{1}\left(\int_{0}^{2} x y^{2} d x\right) d y \\
& =\int_{-1}^{1} y^{2} \cdot\left[\frac{1}{2} x^{2}\right]_{x=0}^{x=1} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{-1}^{1} y^{2} d y \\
& =\frac{1}{2} \cdot\left[\frac{1}{3} y^{3}\right]_{y=-1}^{y=1}=\frac{1}{3}
\end{aligned}
$$

On the other hand.

$$
\begin{aligned}
\int_{0}^{1} \int_{-1}^{1} f(x, y) d y d x & =\int_{0}^{1}\left(\int_{-1}^{1} x y^{2} d y\right) d x \\
& =\int_{0}^{1} x \cdot\left[\frac{1}{3} y^{3}\right]_{y=-1}^{y=1} d x \\
& =\frac{2}{3} \int_{0}^{1} x d x \\
& =\frac{2}{3} \cdot\left[\frac{1}{2} x^{2}\right]_{x=0}^{x=1}=\frac{1}{3}
\end{aligned}
$$

In fact. $\int_{R} f d V=\frac{1}{3}$.

Remark: The underlying principle why this works is the concept of "slicing" a higher dimensional object into lower dimensional ones.

Suppose $f: R=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is cts.
Recall: $\quad \int_{R} f d V=\begin{aligned} & \text { Volume of the } 30 \text { region } \\ & \text { under the graph }\end{aligned}$ under the graph $z=f(x, y)$

Volume of this region

$$
=\int_{R} f d V
$$

Now, for EACH FIXED $x_{0} \in[a, b]$, we can consider the 1-variable function $g_{x_{0}}:[c . d] \rightarrow \mathbb{R}$

$$
g_{x_{0}}(y)=f\left(x_{0}, y\right)
$$

Area of this slice

$$
=\int_{c}^{d} g_{x_{0}}(y) d y
$$

Idea: "Summing up" all these areas

$$
\int_{a}^{b}\left(\int_{c}^{a} f(x, y) d y\right) d x
$$

gives the 3D volume $\int_{R} f d V$

We can also do the "slicing" in the y-direction.
For EACH FIXED $y_{0} \in[c, d]$, we can consider the 1 -variable function $h_{y_{0}}:[a, b] \rightarrow \mathbb{R}$

$$
h_{y_{0}}(x)=f\left(x, y_{0}\right)
$$

Area of this slice

$$
=\int_{a}^{b} h_{y_{0}}(x) d x
$$

Idea: "Summing up" all these areas

$$
\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

gives the 3D volume $\int_{R} f d V$

This heuristic idea works well provided that f is "nice" enough (es .cts). There are some subtle issues if f is only assumed to be integrable. This is shown by the following example.

Example 2 : Consider $f: R=[0,1] \times[0,1] \rightarrow \mathbb{R}$.

$$
f(x, y)= \begin{cases}1 & \text { if } x=0, y \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Since f vanishes identically except on the set $\{(x, y) \in \mathbb{R} \mid x=0, y \in \mathbb{Q}\}$ which has measure zero, we have f is integrable and $\int_{R} f d V=0$. However, the function $9_{0}:[0,1] \rightarrow \mathbb{R}$,

$$
g_{0}(y):=f(0, y)= \begin{cases}1 & \text { if } y \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

is NOT integrable (Why?) on $[0,1]$ and hence $\int_{0}^{1} g_{0}(y) d y$ does NOT exist! None the less. for ANY $0 \neq x_{0} \in[0,1]$, the function $g_{x_{0}}:[0.1] \rightarrow \mathbb{R}$ satisfies $g_{x_{0}}(y):=f\left(x_{0}, y\right) \equiv 0$, hence is integrable with $\int_{0}^{1} g_{x_{0}}(y) d y=0$.

To handle the situation in the example above, we introduce some terminology.

Defy: Let $f: R \rightarrow \mathbb{R}$ be a bod function defined on a rectangle $R \subseteq \mathbb{R}^{n}$. We define the upper integral and lower integral of f on R as

$$
\begin{aligned}
& \int_{R} f d V:=\inf _{P} U(f, P) \\
& \int_{R} f d V:=\sup _{P} L(f, P)
\end{aligned}
$$

Remark: Note that $\int_{R}^{\bar{p}} f d V$ and $\int_{\mathbb{R}} f d V$ exist regardless of whether f is integrable. Moreover. we always have

$$
\int_{\bar{R}} f d v \leqslant \int_{R}^{\bar{R}} f d v
$$

and " $=$ " holds if and only if f is integrable on R.

Fubini's Theorem: Let $f: R \rightarrow \mathbb{R}$ be a bold function on a rectangle $R \subseteq \mathbb{R}^{n}$ s.t.

$$
R=A \times B
$$

for some rectangles $A \subseteq \mathbb{R}^{m}, B \subseteq \mathbb{R}^{k}$. Denote

$$
\begin{array}{lr}
\underline{F}(x):=\int_{B} f(x, y) d y & \frac{\text { Notation }}{f=f(x, y)} \\
\bar{F}(x):=\int_{B} f(x, y) d y & \text { where } x \in A . \\
y \in B .
\end{array}
$$

Suppose f is integrable on R. THTEN, both E and \bar{F} are integrable on A and

$$
\begin{aligned}
\int_{R} f d V & =\int_{A} \underline{F}(x) d x=\int_{A} \int_{B} f(x, y) d y d x \\
& =\int_{A} \bar{F}(x) d x=\int_{A} \int_{B} f(x, y) d y d x
\end{aligned}
$$

Similarly, we have

$$
\int_{R} f d V=\int_{B} \int_{A} f(x, y) d x d y=\iint_{B} \int_{A} f(x, y) d x d y
$$

Remark: The assumption that f is integrable on R is important. There exist functions whose iterated integrals exist but is NOT integrable.
(See Problem Set)

Proof of Fubini's Theorem:

- Since $R=A \times B$, any partition P of R induces a partition P_{A} of A and a partition P_{B} of B
s.t. if $P_{A}=\left\{Q_{A} \mid Q_{A} \in P_{A}\right\}$.

$$
P_{B}=\left\{Q_{B} \mid Q_{B} \in P_{B}\right\}
$$

then $P=\left\{Q_{A} \times Q_{B} \mid Q_{A} \in P_{A}, Q_{B} \in P_{B}\right\}$

Claim 1: $L(f, \mathbb{P}) \leqslant L\left(E \cdot P_{A}\right)$
Take ANY $Q=Q_{A} \times Q_{B}$ where $Q_{A} \in P_{A}, Q_{B} \in P_{B}$.
Since $\inf f \leqslant f\left(x_{0}, y\right) \quad \forall x_{0} \in Q_{A}, y \in \mathbb{Q}_{B}$

$$
\Rightarrow \quad \inf _{Q} f \leq \inf _{y \in Q_{B}} f\left(x_{0}, y\right) \quad \forall x_{0} \in Q_{A}
$$

Therefore, if we fixed $x_{0} \in Q_{A}$, multiplying by $\operatorname{Vol}\left(Q_{B}\right)$ and summing over all $Q_{B} \in P_{B}$.

$$
\begin{aligned}
& \sum_{Q_{B}} \inf _{A \times Q_{B}} f \cdot \operatorname{vol}\left(Q_{B}\right) \\
\leqslant & \sum_{Q_{B}} \inf _{y \in Q_{B}} f\left(x_{0}, y\right) \cdot \operatorname{vol}\left(Q_{B}\right) \\
= & L\left(f\left(x_{0}, y\right) \cdot \rho_{B}\right) \text { since } x_{0} \text { is fixed } \\
\leqslant & \int_{B} f\left(x_{0}, y\right) d y=: F\left(x_{0}\right)
\end{aligned}
$$

Since the above inequalities hold for EACH fixed $x_{0} \in Q_{A}$. We have

$$
\sum_{Q_{B}} \inf _{A} \times Q_{B} f \cdot \operatorname{vol}\left(Q_{B}\right) \leqslant \inf _{x \in Q_{A}} F(x)
$$

Multiply by $\operatorname{Vol}\left(Q_{A}\right)$ and sum over all $Q_{A} \in P_{A}$.

$$
\begin{aligned}
& L(f, P) \\
= & \sum_{Q} \inf f \cdot \operatorname{Vol}(Q) \\
= & \sum_{Q_{A}} \sum_{Q_{B}} \inf _{A \times Q_{B}} f \cdot \operatorname{vol}\left(Q_{B}\right) \cdot \operatorname{vol}\left(Q_{A}\right) \\
\leqslant & \sum_{Q_{A}} \inf _{Q_{A}} E \cdot \operatorname{Vol}\left(Q_{A}\right)=L\left(F \cdot P_{A}\right)
\end{aligned}
$$

which proves the claim.
$\underline{C l a i m} 2: \quad u\left(F, P_{A}\right) \leq U(F, O)$
The proof is similar to Claim 1 and hence left as an exercise.

In summary, we have the following relations

$$
\begin{gathered}
\text { Claim 1 } U\left(E, P_{A}\right): \because \leq \bar{F} \quad \text { claim 2 } \\
L(f, P) \leqslant L\left(E, P_{A}\right) \quad U\left(\bar{F}, P_{A}\right) \leq U(F, P) \\
\because E \leq \bar{R}) L\left(\bar{F}, P_{A}\right)
\end{gathered}
$$

Claim 3: F, \bar{F} are integrable over A.
Since f is integrable over R by assumption. we have from Riemann condition that $\forall \varepsilon>0$. \exists partition of R st.

$$
u(f, P)-L(f, P)<\varepsilon
$$

By the diagram above, we have

$$
\begin{aligned}
& U\left(\underline{F}, P_{A}\right)-L\left(F, P_{A}\right)<\varepsilon \\
& U\left(\bar{F}, P_{A}\right)-L\left(\bar{F}, P_{A}\right)<\varepsilon
\end{aligned}
$$

This proves the claim by Riemann condition again.

Finally, using the diagram again, we have

$$
\int_{R} f d V=\int_{A} E d V=\int_{A} \bar{F} d V
$$

Example 2 (revisited):
Consider $f: R=[0,1] \times[0,1] \rightarrow \mathbb{R}$.

$$
f(x, y)= \begin{cases}1 & \text { if } x=0, y \in Q \\ 0 & \text { otherwise }\end{cases}
$$

One checks that

$$
\begin{aligned}
& \underline{F}(x)=\int_{0}^{1} f(x, y) d y=0 \quad \forall x \in[0,1] \\
& \bar{F}(x)=\int_{0}^{1} f(x, y) d y= \begin{cases}1 & \text { if } x=0 \\
0 & \text { if } x \neq 0\end{cases}
\end{aligned}
$$

and

$$
\int_{R} f d V=\int_{0}^{1} F(x) d x=\int_{0}^{1} \bar{F}(x) d x=0
$$

Example $3:$ Let $f: R=[0,1] \times[0,1] \rightarrow \mathbb{R}$ s.t.

$$
f(x, y)=\left\{\begin{array}{cl}
1-\frac{1}{q}, & \text { if } y \in \mathbb{Q}, x=\frac{p}{q} \in \mathbb{Q}_{>0} \\
1, & \text { where } p, q \in \mathbb{N} \text { are coprime } \\
1, & \text { otherwise }
\end{array}\right.
$$

Note that f is integrable on R with $\int_{R} f d V=1$.
(Verify this!) On the other hand.

$$
\begin{aligned}
& F(x)=\int_{0}^{1} f(x, y) d y=\left\{\begin{array}{cl}
1-\frac{1}{q} & \text { if } x=\frac{p}{q} \in \mathbb{Q}>0 \\
1 & \text { otherwise }
\end{array}\right. \\
& \bar{F}(x)=\int_{0}^{1} f(x, y) d y=1 \quad \forall x \in[0,1]
\end{aligned}
$$

Therefore, we have

$$
1=\int_{R} f d V=\int_{0}^{1} F(x) d x=\int_{0}^{1} \bar{F}(x) d x
$$

